Теорема Пифагора: квадрату гипотенузы равна сумма катетов, возведенных в квадрат


Опубликованно 07.10.2018 06:03

Теорема Пифагора: квадрату гипотенузы равна сумма катетов, возведенных в квадрат

Каждый школьник знает, что всегда квадрат гипотенузы равен сумме катетов, каждый из которых возведен в квадрат. Эта утверждение носит название теоремы Пифагора. Она является одной из самых известных теорем тригонометрии и математики в целом. Рассмотрим ее подробнее. Понятие о прямоугольном треугольнике

Перед тем, как переходить к рассмотрению теоремы Пифагора, в которой квадрат гипотенузы равен сумме катетов, которые возведены в квадрат, следует рассмотреть понятие и свойства прямоугольного треугольника, для которого справедлива теорема.

Треугольник - плоская фигура, имеющая три угла и три стороны. Прямоугольный же треугольник, как следует из его названия, имеет один прямой угол, то есть этот угол равен 90o.

Из общих свойств для всех треугольников известно, что сумма всех трех углов этой фигуры равна 180o, а это означает, что для прямоугольного треугольника сумма двух углов, которые не являются прямыми, составляет 180o - 90o = 90o. Последний факт означает, что любой угол в прямоугольном треугольнике, который не является прямым, будет всегда меньше 90o.

Сторону, которая лежит против прямого угла, принято называть гипотенузой. Две же другие стороны являются катетами треугольника, они могут быть равны между собой, а могут и отличаться. Из тригонометрии известно, что чем больше угол, против которого лежит сторона в треугольнике, тем больше длина этой стороны. Это означает, что в прямоугольном треугольнике гипотенуза (лежит против угла 90o) будет всегда больше любого из катетов (лежат против углов < 90o). Математическая запись теоремы Пифагора

Эта теорема гласит, что квадрату гипотенузы равна сумма катетов, каждый из которых предварительно возведен в квадрат. Чтобы математически записать эту формулировку, рассмотрим прямоугольный треугольник, в котором стороны a, b и c являются двумя катетами и гипотенузой, соответственно. В этом случае теорема, которая формулируется, как квадрат гипотенузы равен сумме квадратов катетов, формулой следующей может быть представлена: c2 = a2 + b2. Отсюда могут быть получены другие важные для практики формулы: a = √(c2 - b2), b = √(c2 - a2) и c = √(a2 + b2).

Отметим, что в случае прямоугольного равностороннего треугольника, то есть a = b, формулировка: квадрат гипотенузы равен сумме катетов, каждый из которых возведен в квадрат, математически запишется так: c2 = a2 + b2 = 2a2, откуда вытекает равенство: c = a√2. Историческая справка

Теорема Пифагора, гласящая, что квадрату гипотенузы равна сумма катетов, каждый из которых возведен в квадрат, была известна задолго до того, когда на нее обратил внимание знаменитый греческий философ. Многие папирусы Древнего Египта, а также глиняные таблички Вавилонян подтверждают, что эти народы использовали отмеченное свойство сторон прямоугольного треугольника. Например, одна из первых египетских пирамид, пирамида Хефрена, строительство которой относится к XXVI веку до нашей эры (за 2000 лет до жизни Пифагора), была построена, исходя из знания соотношения сторон в прямоугольном треугольнике 3x4x5.

Почему же тогда в настоящее время теорема носит имя грека? Ответ прост: Пифагор является первым, кто математически доказал эту теорему. В сохранившихся вавилонских и египетских письменных источниках говорится лишь об ее использовании, но не приводится никакого математического доказательства.

Считается, что Пифагор доказал рассматриваемую теорему путем использования свойств подобных треугольников, которые он получил, проведя высоту в прямоугольном треугольнике из угла 90o к гипотенузе. Пример использования теоремы Пифагора

Рассмотрим простую задачу: необходимо определить длину наклонной лестницы L, если известно, что она имеет высоту H = 3 метра, и расстояние от стены, в которую упирается лестница, до ее подножия равно P = 2,5 метра.

В данном случае H и P - это катеты, а L - гипотенуза. Поскольку длина гипотенузы равна сумме квадратов катетов, получаем: L2 = H2 + P2, откуда L = √(H2 + P2) = √(32 + 2,52) = 3,905 метра или 3 м и 90,5 см. Автор: Валерий Савельев 19 Августа, 2018



Категория: Педагоги